Talin tension sensor reveals novel features of focal adhesion force transmission and mechanosensitivity

نویسندگان

  • Abhishek Kumar
  • Mingxing Ouyang
  • Koen Van den Dries
  • Ewan James McGhee
  • Keiichiro Tanaka
  • Marie D. Anderson
  • Alexander Groisman
  • Benjamin T. Goult
  • Kurt I. Anderson
  • Martin A. Schwartz
چکیده

Integrin-dependent adhesions are mechanosensitive structures in which talin mediates a linkage to actin filaments either directly or indirectly by recruiting vinculin. Here, we report the development and validation of a talin tension sensor. We find that talin in focal adhesions is under tension, which is higher in peripheral than central adhesions. Tension on talin is increased by vinculin and depends mainly on actin-binding site 2 (ABS2) within the middle of the rod domain, rather than ABS3 at the far C terminus. Unlike vinculin, talin is under lower tension on soft substrates. The difference between central and peripheral adhesions requires ABS3 but not vinculin or ABS2. However, differential stiffness sensing by talin requires ABS2 but not vinculin or ABS3. These results indicate that central versus peripheral adhesions must be organized and regulated differently, and that ABS2 and ABS3 have distinct functions in spatial variations and stiffness sensing. Overall, these results shed new light on talin function and constrain models for cellular mechanosensing.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Talin B is required for force transmission in morphogenesis of Dictyostelium.

Talin plays a key role in the assembly and stabilisation of focal adhesions, but whether it is directly involved in force transmission during morphogenesis remains to be elucidated. We show that the traction force of Dictyostelium cells mutant for one of its two talin genes talB is considerably smaller than that of wild-type cells, both in isolation and within tissues undergoing morphogenetic m...

متن کامل

Contributions of talin-1 to glioma cell-matrix tensional homeostasis.

The ability of cells to adapt their mechanical properties to those of the surrounding microenvironment (tensional homeostasis) has been implicated in the progression of a variety of solid tumours, including the brain tumour glioblastoma multiforme (GBM). GBM tumour cells are highly sensitive to extracellular matrix (ECM) stiffness and overexpress a variety of focal adhesion proteins, such as ta...

متن کامل

Talin Dependent Mechanosensitivity of Cell Focal Adhesions

A fundamental question in mechanobiology is how mechanical stimuli are sensed by mechanosensing proteins and converted into signals that direct cells to adapt to the external environment. A key function of cell adhesion to the extracellular matrix (ECM) is to transduce mechanical forces between cells and their extracellular environment. Talin, a cytoplasmic adapter essential for integrin-mediat...

متن کامل

Nanopatterning reveals an ECM area threshold for focal adhesion assembly and force transmission that is regulated by integrin activation and cytoskeleton tension.

Integrin-based focal adhesions (FA) transmit anchorage and traction forces between the cell and the extracellular matrix (ECM). To gain further insight into the physical parameters of the ECM that control FA assembly and force transduction in non-migrating cells, we used fibronectin (FN) nanopatterning within a cell adhesion-resistant background to establish the threshold area of ECM ligand req...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 213  شماره 

صفحات  -

تاریخ انتشار 2016